张锋等人的颠覆发现,借助人造核酸可观测活细

为探索细胞的机能,人类迄今开发了种类众多的荧光蛋白质。如果要观测某一细胞,荧光蛋白质可以和这一细胞内部的分子结合,然后发出荧光信号,从而使人们能清晰观察到活细胞内各种物质活动情况。但是,由于细胞内RNA等核酸太小,现有的荧光蛋白质都不适合为其“染色”。

2019 年 6 月 20 日,CRISPR 基因编辑重要贡献者张锋教授及其霍华德·休斯医学研究所的同事,在Cell杂志发表重磅成果,他们开发出一种全新的 “DNA 显微镜”,可以建立细胞的图像,同时收集大量的基因组信息。

核心提示: 新华社东京7月23日电日本研究人员日前开发出一种人造核酸,它能够标识拥有特定碱基序列的核酸。借助这样的人造

发现改变世界的新兴科技

上述研究的相关论文于23日发表在德国《应用化学》杂志的网络版上。

因此,此次 DNA 显微技术的开发,其意义并不局限于其自身技术的突破,更为重要的是其未来的应用前景与潜力,这会激发其他研究者对基因型与表型关系、肿瘤特异性靶向药物和受体阻断剂等多个领域更为深刻的创造力。

新华社东京7月23日电日本研究人员日前开发出一种人造核酸,它能够标识拥有特定碱基序列的核酸。借助这样的人造核酸,研究人员观测到了活细胞中RNA的活动情况。

如今,科学家已经可以使用光、x 射线和电子来观察组织和细胞内部。

据日本媒体23日报道,为了解决清晰观测活细胞RNA问题,日本基干研究所研究人员想到了利用可导致分子内电荷性质转变的“激子相互作用”原理。他们以具备“激子相互作用”功能的有机荧光分子为基础,开发出了一种人造核酸。这种人造核酸能识别拥有特定碱基序列的核酸,并与目标核酸相结合,通过“激子相互作用”发出荧光。

(微信号:deeptechchina)

据报道,针对不同的碱基序列,研究人员还开发出了能发出不同颜色荧光的人造核酸,并成功利用这一荧光系统,实时观测了人类宫颈癌组织细胞中RNA的活动情况。

图片 1

可能引发生物医学领域的重大突破

该研究的主要负责人之一 Joshua A. Weinstein 教授表示,可以把每一个分子想象成一个向外发射自己信号的无线电发射塔。靠的越近,那么就可以产生更多的 DNA 对,”分子堆叠“效应更明显,反之,靠的越远,这些 DNA 对越少,”分子堆叠“效应更弱。

图 | 序列编码显示图(其中红光为 RFP、绿光为 GFP、白光为 GAPDH)

图片 2

大家熟悉的电子显微镜、荧光显微镜、薄层显微镜,它们都是基于探测样品发射光子或电子的原理进行观测的。通过这类显微镜,科学家们可以追踪大脑中类似丝状的神经纤维,甚至可以观察活的老鼠胚胎如何产生原始心脏的跳动细胞。

参与本项研究的霍华德·休斯医学研究所研究员 Aviv Regev 表示,捕捉这样一个细胞的完整图像不需要昂贵的显微镜或很多昂贵的设备,只需要样本和一根”吸管“就够了。

在这一过程进行大约 30 个小时后,研究人员就拼凑出识别每一碱基的”分子堆“,然后该团队通过计算机算法解析这些”分子堆“信号,将原始样本中的约 5000 万个基因的碱基序列转化为图像,进而使实验者在光学显微镜下观测样本基因组信息。

但到此为止,我们还是不能直观地观测基因组,所以化学合成法派上用场了,研究人员以这些导入的 DNA 标记物为模板,大量扩增其副本,使每一个标记核酸都挂着”一大堆标记副本“,这样通过”分子堆叠“就使的相邻的标记分子相互碰撞,进而使它们连在一起。

图 | DNA 显微技术显像原理

免疫系统就是一个完美的例子,免疫细胞基因可以因一个碱基改变而变异,每一种变异都会引发细胞产生的抗体类型发生巨大变化,而细胞在组织中的不同位置也能改变抗体的产生。Weinstein 认为,有一天 DNA 显微技术可以帮助科学家们加速癌症免疫疗法治疗的发展,帮助患者的免疫系统自主对抗其体内的肿瘤组织。他说,该方法可能潜在地识别出最适合靶向特定癌细胞的免疫细胞。

因此,张锋教授的研究团队采用了一个十分巧妙的方法来解决这一问题,他们采用了”堆叠“分子的化学合成法。

图 | 荧光显微镜图像与 DNA 显微镜对比(图 A、B 为荧光显微镜,D 为 DNA 显微镜)

图片 3

基于光学的显微镜,可以追溯到 17 世纪,它打开了人类对微观世界的认识。光学显微镜主要依靠可见光照射样本,通过一组透镜组合来放大物品。

关注 DeepTech

Weinstein 教授表示,”你基本上能够完全重建你在光学显微镜下看到的东西。这两种方法是互补的。光学显微镜可以很好地看到分子,即使它们在样品中稀疏,DNA 显微技术在分子密集时,甚至在分子堆叠时,其也拥有十分出色的显示效果。“

为了对核酸水平进行直接观测,实验室及临床中大多依赖分子探针技术,即将与待观察核酸互补的碱基对导入细胞中,利用碱基互补配对原则标记待测核酸,再通过荧光等其他显色物质来显示待测核酸。这种间接方法虽能令研究者观测核酸,但其标本制备过程繁琐,耗时耗力。

在 Regev 看来,这种显微技术的潜力是非常大的。”我们希望它能激发人们的想象力,让人们受到我们从未想过的伟大想法的启发。“

然而,这些显微镜都无法看到在基因组水平的细胞中发生了什么。

显微镜是人类历史上的伟大发明之一,在整个显微镜的发展史上有两次重大突破,分别是光学显微镜和电子显微镜的发明。

图 | “DNA显微镜”图像,每个点代表一个细胞,颜色表示它们包含的 DNA 序列(来源:BROAD INSTITUTE OF MIT AND HARVARD)

图片 4

在生物医学领域,光学显微镜的发明是一项革命性的技术突破,令我们认识到生命体的基本单位为细胞,同时大大助力人类对疾病的认知与防治,比如青霉素的发现。

此次 DNA 显微技术的发明是整个生物医学领域的重大突破。每次显微技术的突破都会带来生物医学领域内出现新的研究领域,比如冷冻电镜的发明,直接将整个结构生物学带到新的高度。

首先,研究人员将待测细胞滴在载玻片上,并进行相应的固定。随后,往细胞内注入各种各样的 DNA 标记物(这里用的是 cDNA 片段),这些 DNA 标记物会连接到与其互补的 RNA 分子上,使其具有唯一的标签。

现在,显微技术领域可能正迎来第三次革命——“DNA 显微镜”问世!

之后科学家们又对光学显微方法进行了反复升级,甚至超越了可见光谱。

图 | DNA 显微技术显像原理及其显像图

Joshua A. Weinstein, Aviv Regev,Feng Zhang. DNA Microscopy: Optics-free Spatio-genetic Imaging by a Stand-Alone Chemical Reaction

而此次张锋教授研发的 DNA 显微技术,通过独特的成像模式,采用特殊的成像原理,可将物理图像编码 DNA,先利用标记核酸的”堆叠“编码每一种核酸,再采用数据分析”投射“其物理图像,从而实现对基因组的直接观测。

最新的 DNA 显微技术显像原理与我们想象中的可能不同,并不是直接对 DNA 链进行显示。这是由于 DNA 中的每个碱基分子在每个细胞内存在的数量十分微小,哪怕我们直接标记,也很难直接观测到其标记信号。

-End-

图片 5

参考:

人类显微视角进入新疆域

在 DNA 显微技术原理及设备制备完成后,研究人员利用几个我们熟知的基因对 DNA 显微技术的显示效果进行了验证。研究人员选择了基础实验中最常用的几种标记蛋白,研究发现,DNA 显微技术能够很好地重建普通荧光显微镜捕捉的细胞图像。

图片 6

1913 年恩斯特·鲁斯发明的电子显微镜,更是将显示水平拉到原子级别。它让研究人员可以在原子水平去了解生理学过程及单个分子的结构。

此次研究的核心研究者张锋教授说,”每个细胞都有独特的 DNA 碱基或基因型组成。通过直接从被研究的分子中捕获信息,DNA 显微技术开辟了一种将基因型与表型联系起来的新方法“。这使得研究者可以更为直观的将基因表达与蛋白功能表达联系在一起,促进生物学各分支的飞速发展。

本文由六合现场开奖结果发布于新闻资讯,转载请注明出处:张锋等人的颠覆发现,借助人造核酸可观测活细

TAG标签: 2019年六合
Ctrl+D 将本页面保存为书签,全面了解最新资讯,方便快捷。